SUBMERGED FRICTION STIR PROCESSING OF EN AW 7075 ALUMINUM ALLOY

  • Lia Nicoleta Botila National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Ion Aurel Perianu National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Iuliana Duma National R&D Institute for Welding and Material Testing - ISIM Timisoara
  • Gabriela Victoria Mnerie National R&D Institute for Welding and Material Testing - ISIM Timisoara
Keywords: submerged friction stir processing SFSP, EN AW 7075 aluminum alloy, single and multiple passes, structural analysis, mechanical properties

Abstract

Friction stir processing is a process for processing metallic materials that aims to locally modify the microstructure and mechanical properties. Submerged friction stir processing aims to limit the process temperature by using a liquid working medium, so as to avoid thermal overloading of the processing tool and the materials to be processed. The paper presents experimental research carried out at ISIM Timisoara on submerged friction stir processing for the 5mm thick EN AW 7075 aluminum alloy. Processing experiments were carried out in single pass and in multiple passes, with positive results. The evaluation program of samples/test pieces taken from the processed materials included visual examination and penetrating radiation, macro- and microscopic structural analyses, as well as mechanical tensile and bending tests.

References

1. Butola, R. et. al., Two decades of friction stir processing–a review of advancements in composite fabrication, J. Adhes. Sci. Technol., Vol. 36, Issue 6, pp.1-38, (2022), https://doi.org/10.1080/01694243.2021.1938835;
2. El-Sayed, M.M., Shash, A.Y., Abd-Rabou, M. et al., Welding and processing of metallic materials by using friction stir technique: A review, J. Adv. Join. Process., Vol. 3, 100059, (2021); https://doi.org/10.1016/j.jajp.2021.100059;
3. Heidarzadeh, A., Mironov, S., Kaibyshev, R. et al., Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Prog. Mater. Sci., Vol. 117, 100752, (2021). https://doi.org/10.1016/j.pmatsci.2020.100752;
4. Rathinasuriyan, C. and Kumar, V.S.S., Submerged Friction Stir Welding and Processing: Insights of Other Researchers, Int. J. Appl. Eng. Res., Vol. 10, No.8, pp. 6530-6536, (2015);
5. Iwaszko, J., New Trends in Friction Stir Processing: Rapid Cooling – a Review, Trans. Indian Inst. Met., Vol. 75, pp.1681-1693, (2022), https://doi.org/10.1007/s12666-022-02552-2;
6. Patel, M.S., Immanuel, R.J., Rahaman, A. et. al., Critical Review of Advanced Cooling Strategies in Friction Stir Processing for Microstructural Control, Crystals, Vol.14, pp. 655, (2024). https://doi.org/10.3390/cryst14070655;
7. Patel, V., Li, W., Vairis, A. et al., Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement, Crit. Rev. Solid State Mater. Sci. Vol. 44, pp. 378–426, (2019). https://doi.org/10.1080/10408436.2018.1490251;
8. Srivastava, A.K. et al., 20th Century Uninterrupted Growth in Friction Stir Processing of Lightweight Composites and Alloys, Mater. Chem. Phys., Vol. 266, 124572, (2021), https://doi.org/10.1016/j.matchemphys.2021.124572;
9. Li, K., Liu, X. and Zhao, Y., Research status and prospect of friction stir processing technology, Coatings, Vol. 9, pp. 129, (2019); doi:10.3390/coatings9020129,
10. Hovanski, Y., Mishra, R., Sato Y., Upadhyay P., Yan D., Friction Stir Welding and Processing IX, The Minerals, Metals & Materials Series, Springer Nature, Cham, Switzerland, (2017), DOI 10.1007/978-3-31952383-5;
11. Węglowski, M.S., Friction stir processing – State of the art, Arch. Civ. Mech. Eng., Vol. 18, Issue 1, pp.114-129, (2018); https://doi.org/10.1016/j.acme.2017.06.002;
12. Kumar, R.A., Kumar, R.G.A., Ahamed, K.A., Alstyn, B.D., Vignesh, V., Review of friction stir processing of aluminium alloys, Mater. Today Proc., Vol. 16, pp. 1048–1054, (2019). https://doi.org/10.1016/j.matpr.2019.05.194;
13. Ma, Z.Y., Feng, A. H., Chen, D. L., Shen, J., Recent Advances in Friction Stir Welding/ Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci., Vol. 43, No.4, (2018), https://doi.org/10.1080/10408436.2017.1358145;
14. Muribwathoho, O., Mabuwa, S. and Msomi, V., Review on Multi-Pass Friction Stir Processing of Aluminium Alloys, preprint - not reviewed yet, https://doi.org/10.20944/preprints202007.0514.v1;
15. Silvestri, A.T, El Hassanin, A., de Alteriis, G., Astarita, Energy Consumption and Tool Condition in Friction Stir processing of Aluminum Alloys, Int. J. Precis. Eng. Manuf. – Green Technol., Vol.12, pp.1-18, (2025), https://doi.org/10.1007/s40684-024-00633-9;
16. Maurya, M., Maurya, A. and Kumar, S., Variants of friction stir based processes: review on process fundamentals, material attributes and mechanical properties, Materials Testing, Vol.66, No. 2, pp. 271-287, (2024). https://doi.org/10.1515/mt-2023-0196;
17. Nourbakhsh, S.H., Atrian, A., Effect of Submerged Multi-pass Friction Stir Process on the Mechanical and Microstructural Properties of Al7075 Alloy, J. Stress Anal., Vol.2, No.1, 2017, http://dx.doi.org/10.22084/jrstan.2017.14013.1022;
18. Patel, V.V., Badheka, V., Kumar, A., Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy, J. Mater. Process. Technol., Vol. 240, pp.68-76, (2017), https://doi.org/10.1016/j.jmatprotec.2016.09.009;
19. Patel, V., Badheka, V., Li, V., Akkireddy, S., Hybrid friction stir processing with active cooling approach to enhance superplastic behavior of AA7075 aluminum alloy, Arch. Civ. Mech. Eng., Vol. 19, pp. 1368–1380 (2019), https://doi.org/10.1016/j.acme.2019.08.007;
20. Garcia-Bernal, M.A., Mishra, R.S., Verma, R. and Hernandez-Silva, D., Influence of friction stir processing tool design on microstructure and superplastic behavior of Al-Mg alloys, Mater. Sci. Eng. A, Vol. 670, pp.9–16 (2016), https://doi.org/10.1016/j.msea.2016.05.115;
21. Kumar, A., Gahlot, P. et al., A state-of-the-art literature review on friction stir welding of 7075-aluminium alloy for tool geometry selection, environmental parameter and mathematical modelling perspective, Int. J. Interact. Des. Manuf., Vol.19, pp.1549–1562, (2025), https://doi.org/10.1007/s12008-024-01922-y;
22. Girish, G., Effect of tool pin geometry and multi-pass intermittent friction stir processing on the surface properties of aerospace grade aluminium 7075 alloy, Proc. Inst. Mech. Eng., Part E, Vol. 238, Issue 5, pp. 2173-2185, (2023), doi:10.1177/09544089231158948;
23. Pang, J., Liu, F. et al., Friction stir processing of aluminium alloy AA7075: microstructure, surface chemistry and corrosion resistance, Corros. Sci., Vol. 106, pp.217–228, (2016), https://doi.org/10.1016/j.corsci.2016.02.006;
24. Akbari, M., DebRoy, T., Asadi, P., Sadowski, T., Recent advances in friction stir welding/processing tools, J. Manuf. Process., Vol.142, pp. 99-156, (2025), https://doi.org/10.1016/j.jmapro.2025.03.089;
25. Gholami, S., Emadoddin, E. T al., Friction stir processing of 7075 Al alloy and subsequent aging treatment, Trans. Nonferrous Met. Soc. China., Vol. 25, Issue 9, pp.2847-2855, (2015), https://doi.org/10.1016/S1003-6326(15)63910-3;
26. Navaser, M., Atapour, M., Effect of Friction Stir Processing on Pitting Corrosion and Intergranular Attack of 7075 Aluminum Alloy, J. Mater. Sci. Tech., Vol. 33, Issue 2, pp.155-165, (2017), https://doi.org/10.1016/j.jmst.2016.07.008;
27. Rana, H.G., Badheka, V.J., Kumar, A., Fabrication of Al7075 / B4C Surface Composite by Novel Friction Stir Processing (FSP) and Investigation on Wear Properties, Procedia Tech., Vol.23, pp. 519- 528, (2016), https://doi.org/10.1016/j.protcy.2016.03.058;
28. Kumar, A., Godasu, A.K., Pal, K., Mula, S., Effects of in-process cryocooling on metallurgical and mechanical properties of friction stir processed Al7075 alloy, Mater. Charact., Vol. 144 , pp.440-447, (2018), https://doi.org/10.1016/j.matchar.2018.08.001;
29. Nadammal, N., Kailas, S.V. et al., Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy, Mater. Charact., Vol.140, pp.134–146, (2018), https://doi.org/10.1016/j.matchar.2018.03.044;
30. Moghaddam, M., Zarei-Hanzaki, A., Pishbin, H., Shafieizad, A.H. and Oliveira V.B., Characterization of the microstructure, texture and mechanical properties of 7075 aluminum alloy in early stage of severe plastic deformation, Mater. Charact. , vol. 119, pp. 137–147, (2016), https://doi.org/10.1016/j.matchar.2016.07.026;
31. Patel, V., Badheka, V., Kumar, A., Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications, Metallogr. Microstruct. Anal., Vol. 5, pp. 278–293, (2016), https://doi.org/10.1007/s13632-016-0285-x;
32. Patel, V.V., Badheka, V., Kumar, A., Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy, Mater. Manuf. Process., Vol 31, pp.1573-1582, (2016) https://doi.org/10.1080/10426914.2015.1103868;
33. Orozco-Caballero, A., Alvarez-Leal, M. et al., Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-ZnMg-Cu alloy, Mater. Des., Vol. 125, pp.116–125, (2017), https://doi.org/10.1016/j.matdes.2017.03.081;
34. Arezoudar, A.F. and Hosseini, A., A new method for localization of the residual stress distribution and enhancement of wear resistance through underwater friction stir processing with stationary shoulder, Int. J. Adv. Manuf. Technol., Vol.133, pp. 2515-2531, (2024) https://doi.org/10.1007/s00170-024-13831-1.
35. Wang, J.T., Liu, A.X., Zhang, Y.K. et al., Influence of Process Parameters on Wear Resistance of Surfaces Modified by Friction Stirring Processing in 7075 Aluminum Alloy, Met. Mater. Int. Vol. 31, pp.625–635, (2025). https://doi.org/10.1007/s12540-024-01783-w;
36. Patel, S. K., Singh, V. P., Roy, B. S. and Kuriachen, B., Recent research progresses in Al-7075 based in-situ surface composite fabrication through friction stir processing: A review. Mater. Sci. Eng.: B, Vol. 262, 114708, (2020), https://doi.org/10.1016/j.mseb.2020.114708;
37. Rashed S.E., Hassan H.A. et al., Surface improvement of 7075 alloy using friction stir processing, EGTRIB, Vol.17, No.2, pp.1-12, (2020), https://doi.org/10.21608/jest.2020.81083.
Published
2025-12-31
How to Cite
Botila, L., Perianu, I., Duma, I., & Mnerie, G. (2025). SUBMERGED FRICTION STIR PROCESSING OF EN AW 7075 ALUMINUM ALLOY. Nonconventional Technologies Review, 29(4). Retrieved from http://www.revtn.ro/index.php/revtn/article/view/564

Most read articles by the same author(s)