SIMULATION OF PS LASER PULSES INDUCED ABSORPTION PHENOMENA IN MATERIALS
Abstract
The laser-induced damage in transparent or non-transparent materials represents an important active field of research as part of laser/material interactions studies. Most of research activities within this field are aiming to laser micro-processing of transparent optical materials, glasses, ceramics and metals. An example of such laser micro-processing techniques is drilling micro channels through a glass plate and drilling transverse holes through single mode optical fibre cladding and core. The latter example of research activity has an important purpose consisting of designing and manufacturing micro-nanoscale optical fibre sensors with improved capabilities. An important issue to be underlined refers to the necessity to develop simulation procedures based on accurate theoretical models of these physical processes in order to use a precise computer control of micro-processing technology.
References
2. Miclos, S., Savastru, D., Lancranjan, I., Numerical Simulation of a Fiber Laser Bending Sensitivity, Rom. Rep. Phys., Vol. 62, No. 3, pp. 519-527, (2010).
3. Savastru, D., Savastru, R., Miclos, S., Lancranjan I., Numerical analysis of photonic crystal waveguide, J. Ovonic Res., Vol. 9, No. 5, pp. 147-155, (2013).
4. Keldysh, L.V., Ionization in the field of a strong electromagnetic wave, Sov. Phys. Jetp-USSR, Vol. 20, No. 5, pp.1307-1314, (1965).
5. Smith, H., Jensen, H.H., Transport phenomena, Clarendon Press eds., Oxford, (1989).
6. Wong, J., Ferriera, J.L., Lindsey, E.F., Haupt, D.L., Hutcheon, I.D., Kinney, J.H., Morphology and microstructure in fused silica induced by high fluence ultraviolet (355 nm) laser pulses, J. Non-Cryst. Solids, Vol. 352, No. 3, pp. 255–272, (2006).
7. Qi, H.J., Zhu, M.P., Fang, M., Shao, S.Y., Wei, C.Y., Yi, K., Shao, J.D., Development of high-power laser coatings, High Power Laser Sci. Eng., Vol. 1, No. 1, pp. 36–43, (2013).
8. Vignes, J.R.M, Soules, T.F., Stolken, J.S., Settgast, R.R., Elhadj, S., Matthews, M.J., Thermomechanical Modeling of Laser-Induced Structural Relaxation and Deformation of Glass: Volume Changes in Fused Silica at High Temperatures, J. Am. Ceram. Soc., Vol. 96, No. 1, pp. 137–145, (2013).
9. Reif, J., Costache, F., Henyk, M., Pandelov, S.V., Ripples revisted: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics, Appl. Surf. Sci., Vol. 197-198, pp. 891–895, (2002).
10. Savastru, D., Miclos, S., Savastru, R., Lancranjan, I., Analysis of optical microfiber thermal processes. Rom. Rep. Phys., Vol. 67, No. 4, pp. 1586–1596, (2015).
11. Tsibidis, G.D., Barberoglou, M., Loukakos, P.A., Stratakis, E., Fotakis, C., Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions, Phys. Rev. B, Vol. 86, No. 11, pp. 115316, (2012).
12. Bonse, J., Rosenfeld, A., Krüger, J., On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys., Vol. 106, pp. 104910, (2009).
13. Rohloff, M., Das, S.K., Höhm, S., Grunwald, R., Rosenfeld, A., Krüger, J., Bonse, J., Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences, J. Appl. Phys., Vol. 110, pp. 014910, (2011).
14. Das, S.K., Messaoudi, H., Debroy, A., McGlynn, E., Grunwald, R., Multiphoton excitation of surface plasmon–polaritons and scaling of nanoripple formation in large bandgap materials, Opt. Mater. Express, Vol. 3, No. 10, pp. 1705–1715, (2013).
15. Birnbaum, M., Semiconductor surface damage produced by ruby lasers, J. Appl. Phys., Vol. 36, pp. 3688–3689, (1965).
16. Keilmann, F., Bai, Y.H., Periodic surface structures frozen into CO2 laser-melted quartz, Appl. Phys. A, Vol. 29, No. 1, pp. 9–18, (1982).
17. Temple, P. A., Soileau, M.J., Polarization charge model for laser-induced ripple patterns in dielectric materials, IEEE J. Quantum Elect., Vol. 17, No. 10, pp. 2067–2072, (1981).
18. Miclos, S., Savastru, D., Savastru, R., Lancranjan, I.I., Numerical analysis of Long Period Grating Fibre Sensor operational characteristics as embedded in polymer, Composite Structures, Vol. 183, No. SI, pp. 521–526, (2018).
19. Savastru, D., Miclos, S., Savastru, R., Lancranjan, I.I., Study of thermo-mechanical characteristics of polymer composite materials with embedded optical fibre, Composite Structures, Vol. 183, No. SI, pp. 682–687, (2018).
20. Gouveia, C.A.J., Baptista, J.M., Jorge, P.A.S., Refractometric Optical Fiber Platforms for Label Free Sensing, Chapter 13 in Current Developments in Optical Fiber Technology, pp. 345-373, INTECH eds., (2014).
21. Gautier, S.M., Blum, L.J., Coulet, P.R., Fibre-optic biosensor based on luminescence and immobilized enzymes: Microdetermination of sorbitol, ethanol and oxaloacetate, J. Biolumin. Chemilumin., Vol. 5, No. 1, pp. 57-63, (1990).
22. Tian, Y., Wang, W., Wu, N., Zou, X., Wang, X., Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules, Sensors, Vol. 11, No. 4), pp. 3780-3790, (2011).
23. Crisp, M.D., Boling, N.L., Dube, G., Importance of Fresnel reflections in laser surface damage of transparent dielectrics, Appl. Phys. Lett., Vol. 21, No. 8, pp. 364–366, (1972).
24. Zeng, X., Mao, X.L., Greif, R., Russo, R.E., Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon, Appl. Phys. A, Vol. 80, No. 2, pp. 237–241, (2005).
25. Hodgson, N., Weber, H., Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts and Applications, 2nd edition, Springer Science and Business Media Inc. eds., New York, (2005).
26. Siegman, A.E., Lasers, University Science Books eds., Sausalito, California, (1986).
27. Obara, G., Shimizu, H., Enami, T., Mazur, E., Terakawa, M., Obara, M., Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses, Opt. Express, Vol. 21, No. 22, pp. 26323–26334, (2013).
28. Deng, Z., Eberly, J.H., Multiphoton absorption above ionization threshold by atoms in strong laser fields, JOSA B, Vol. 2, No. 3, pp. 486-493, (1985).
29. Letokhov, V.S., Laser photoionization spectroscopy, Academic Press eds., (1987).
30. Dyer, P. E., Farley, R. J., Giedl, R., Karnakis, D. M., Excimer laser ablation of polymers and glasses for grating fabrication, Appl. Surf. Sci., Vol. 96–98, pp. 537–549, (1996).
31. Yu, Z. K., He, H. B., Qi, H. J., Fang, Z., Li, D. W., Characteristics of 355 nm laser damage in bulk materials, Chinese Phys. Lett., Vol. 30, No. 6, Art. No. 067801, (2013).
32. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W., Perry, M. D., Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Phys. Rev. Lett., Vol. 74, pp. 2248-2251, (1995).
33. Liu, X., Du, D., Mourou, G., Laser ablation and micromachining with ultrashort laser pulses, IEEE J. Quantum Elect., Vol. 33, No. 10, pp. 1706-1716, (1997).
34. Gattass, R. R., Cerami, L. R., Mazur, E., Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates, Opt. Express, Vol. 14, No. 12, pp. 351-354, (2006).
35. Osellame, R., Taccheo, S., Marangoni, M., Ramponi, R., Laporta, P., Polli, D., De Silvestri, S., Cerullo, G., Femtosecond writing of active optical waveguides with astigmatically shaped beams, JOSA B, Vol. 20, No. 7, pp. 1559-67, (2003).