THE INFLUENCE OF THE ELECTROMAGNETIC FIELD ON THE SURFACE HARDENING PROCESS OF FLAT WORKPIECES

  • Livia Bandici University of Oradea, Faculty of Electrical Engineering and Information Technology, Department of Electrical Engineering
  • Darius Telea S.C. Tecor S.A. Oradea
  • Teodor Leuca University of Oradea, Faculty of Electrical Engineering and Information Technology, Department of Electrical Engineering, Academy of Romanian Scientists
  • Stefan Nagy University of Oradea, Faculty of Electrical Engineering and Information Technology, Department of Electrical Engineering
  • Daniel Trip University of Oradea, Faculty of Electrical Engineering and Information Technology, Department of Electronics and Telecommunications
  • Adrian Burca University of Oradea, Faculty of Electrical Engineering and Information Technology, Department of Electronics and Telecommunications
Keywords: electromagnetic field, modelling, surface hardening

Abstract

This paper presents the results obtained by numerical modelling of the surface induction hardening process of a workpiece. We performed numerical modelling by using the ELTA program. In this study, we aimed to establish the electrical parameters in order to optimize the surface hardening process.

References

1. Rudnev V., Loveless D., Cook R., Black M., Handbook of Induction Heating, Marcel Dekker Inc., New York, Basel, (2003).
2. Lupi S., Modelling for research and industrial development in induction heating, 4th Int. Conf. on EM Processing of Material EPM 2003, Oct. 14-17, LyonFrance, (2003).
3. Demidovitch V., Skvortsov V., Optimisation of Induction Heating Devices: Experiece of the Last 20 Years, HIS 98, Padova, Italia (1998).
4. Buidoş, Tr., Maghiar, T., Soproni, D., Pantea, M. Some aspects regarding inductive heating application in order to make the magnetron device, PIERS - Progress in Electromagnetics Research Symposium, Pisa; Italy, pp. 535-538 (2004).
5. Hănţilă F., Preda G., Vasiliu M., Leuca T., Della Giacomo E., Calculul numeric al curentilor turbionari. Editura ICPE, (2001).
6. Ciric I. R. and Hantila F. I., An efficient harmonic method for solving nonlinear time-periodic eddy-current problems, IEEE Trans. Magn, vol. 43, no.4, pp.1185-1188, (2007).
7. Hănţilă F., Preda G., Vasiliu M., Leuca T., Della Giacomo E., Calculul numeric al curentilor turbionari, Editura ICPE, (2001).
8. Ciric I. R., Hanţilă F. I., Maricaru M., Novel Solution to Eddy-Current Heating of Ferromagnetic Bodies With Nonlinear B-H Characteristic Dependent on Temperature, IEEE Trans. on Magn, Vol. 44, No. 6, pp. 1190-1193, (2008).
9. Ciric I. R., Hănţilă F. I., Maricaru M., Marinescu S., Efficient Analysis of the Solidification of Moving Ferromagnetic Bodies With Eddy-Current Control, IEEE Trans. on Magn. Vol. 45, No. 3, pp. 1238-1241, (2009).
10. Hănţilă I. F., Ciric I. R., Maricaru M., Vărăticeanu B., Bandici Livia, A dynamic overrelaxation procedure for solving nonlinear periodic field problems, Revue Roumaine des Sciences Techniques serie Electrotechnique et Energetique, Bucureşti., Vol. 56, No.2, pp. 169-178, (2011).
11. Burca A., Trip N.D., Leuca T., Considerations on the Design of a Low Power Induction Heating System, International Symposium on Fundamentals of Electrical Engineering, Bucureşti, Nov. 28-29, (2014).
12. Maricaru M., Codrean M., Leuca T., Bandici Livia, Vasilescu G. M., Thermal Treatment of Ferromagnetic Bars, Revue Roumaine des Sciences Techniques serie Electrotechnique et Energetique, Bucureşti, Year: 2017, Tome: 62, Issue: 3, pp. 225-228, (2017).
13. Nemkov V.S., Role of Computer Simulation in Induction Heating Techniques. International Induction Heating Seminar, May 13-15, Padua, Italy, pp.301 – 309, (1998).
Published
2018-03-30
How to Cite
Bandici, L., Telea, D., Leuca, T., Nagy, S., Trip, D., & Burca, A. (2018). THE INFLUENCE OF THE ELECTROMAGNETIC FIELD ON THE SURFACE HARDENING PROCESS OF FLAT WORKPIECES. Nonconventional Technologies Review, 22(1). Retrieved from https://www.revtn.ro/index.php/revtn/article/view/65